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INTRODUCTION

Because of many unique and attractive properties (e.g., light weight, low cost,
and compatibility with integrated circuits), microstrip antennas are finding many
applications. As a result, in recent years a number of theoretical and experimental
methods to determine their electromagnetic properties have been proposed (ref. 1).

By treating the rectangular antenna as two parallel slots interconnected by a low-
impedance transmission line, it is possible to obtain some useful predictions of the
radiative properties (refs. 2 and 3). However, this simple model is not adequate for
predicting the variation of impedance with feed location. Furthermore, the
transmission-line model cannot be applied to microstrip patch antennas other than
rectangular. To analyze a wider variety of microstrip patch shapes, a cavity model
has been proposed (ref. 4). Although the cavity model predicts guite accurately the
radiation pattern, it requires a semiempirical correction for the resonant frequency
in order to match the calculated results with the experimental data. This discrep-
ancy may be due to the fringing field at the edges of the patch not being incorpo-
rated in the formulation and the dielectric substrate with finite thickness being
replaced by a homogeneous medium of equivalent dielectric constant. There is, there-
fore, a need for more rigorous analysis techniques for microstrip antennas.

The rectangular and circular microstrip antennas have been analyzed by modeling
the patch as a grid of wires and solving the resulting structure numerically
(ref. 5). Although the method appears to be more accurate and general, it requires a
lot of computer time and storage. Furthermore, to optimize the computation, it is
essential to know a priori the direction of current flow on the patch.

Using the reaction integral equation in conjunction with the method of moments,
Newman et al. (ref. 6) propose a method which seems to be quite accurate for predict-
ing patch current, impedance, and resonant frequency. However, Newman's method
requires an unusually precise computation of the elements in the impedance matrix
while still modeling the dielectric substrate as an equivalent semi-infinite homoge-
neous medium.

There have been other attempts at analyzing microstrip antennas as open micro-
strip cavity resonators for rectangular and circular patches (refs. 7 and 8). How-
ever, these formulations do not include the patch excitation in the analytical model-
ing, and the techniques cannot be extended to microstrip arrays.

The purpose of the present work is to reformulate the problem to overcome the
difficulties encountered in previous methods and to establish a foundation for ana-~
lyzing a variety of electromagnetic problems related to printed-circuit antennas.

The problem is analyzed by first deriving a dyadic Green's function which satisfies
the boundary conditions for a unit current located in the plane of the microstrip
patch. By weighting the Green's function with the electric current density and inte-
grating over the patch, the radiated electromagnetic field is calculated at any point
inside the dielectric. Coupled electric-field integral equations for the unknown
patch current density are obtained by forcing the total tangential electric field on
the patch to zero. With the proper basis and testing functions for the unknown cur-
rent distribution, the integral equations are reduced to a matrix equation which may
be solved for the patch current. The current distribution on the patch is then used
to determine the properties of the microstrip antennas.



Some features of the present method are as follows: (1) it correctly accounts
for the finite thickness of the dielectric substrate and the effect of surface waves;
(2) it does not require high precision in the numerical computation of the matrix
elements; (3) it allows improved convergence of the solution through proper choice of
the basis and testing functions; (4) it can be extended to microstrip patches of any
shape, provided one selects the proper basis functions; and (5) it is suitable for
more involved problems of coupled microstrip antennas.

SYMBOLS
A magnetic vector potential
d dielectric substrate thickness
E electric-field vector
Eo amplitude of plane wave
E; x component of electric field due to the incident plane wave (eq. (16))
Ei y component of the electric field due to the incident plane wave
Ee(9,¢) © component of E
E¢(9,¢) ¢ component of E
G dyadic Green's function
5 bidimensional Fourier transform of G
H magnetic-field vector
Hy magnetic field due to the incident plane wave
I unit dyadic impulse current
J surface electric current density vector
j V-1
3 bidimensional Fourier transform of J
Jx x component of 5
jy y component of j
jx complex coefficient for x-directed current
jy complex coefficient for y-directed current
k wave propagation constant in dielectric region
ko wave propagation constant in free space
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Fourier transform variable with respect to =x
Fourier transform variable with respect to vy
complex wave propadgation constant in 2z direction
number of y-directed strips (see fig. 2)
m,n subdomain of field
number of x-directed strips (see fig. 2)
p,q subdomain of source
coordinates of point in spherical coordinate system
E-plane dimension of the rectangular patch
resonant width of patch
H-plane dimension of the rectangular patch
rectangular Cartesian coordinates of field point
rectangular Cartesian coordinates of source point
unit vectors along x-, y-, and z-axis, respectively

self-impedance of x~-directed patch current (eq. (52))

mutual impedance between x-directed currents on m,n and p,q subdomains
(eq. (37))

mutual impedance between x- and y~directed currents on m,n and p,qgq
subdomains (eq. (38))

matual impedance between y- and x-directed currents on m,n and p,q
subdomains (eq. (39))

matual impedance between y-directed currents on m,n and p,q subdomains
{eq. (40))

wave reflection coefficient

= WX/M + 1

=W /N + 1
v/

A(Wx/KE)3 bandwidth for voltage standing-wave ratio (VSWR) less than 3



6{x-x') delta function, %E-fwm explj(x - x")w] aw

Er relative permittivity of dielectric substrate
Xe wavelength in dielectric substrate
B permeability of dielectric substrate
w angqular frequency, rad/sec
Superscripts:
I dielectric region
11 free space region
I/11 either region I or II
THEORY
General

The geometry of the microstrip antenna is shown in figure 1. It consists of a
thin conducting plate, or patch, in the form of a rectangle, a square, a circle, or
other geometric shapes embedded in a dielectric substrate, with one surface being
grounded by a perfectly conducting plane. Usually the microstrip antenna is excited
either by a microstrip transmission line connected to one edge of the patch or by a
coaxial probe with the center conductor extending through the ground plane and con-
nected to the patch. However, in order to determine the resonant frequency, the
bandwidth, and the radiation pattern, it can be assumed that the patch is excited by
a plane wave polarized in the x-direction and with normal incidence on the patch, as
shown in figure 1. This model gives results which are valid for the practical micro-
strip antenna so long as the exciting mechanism does not appreciably alter the cur-
rent distribution of the patch. For the dielectric substrate with a thickness less
than 0.1A_, which is the case for most of the practical microstrip antennas, the
dimensions of the exciting mechanism are much less than 1.0?\8 and, therefore, the
feed connection produces only a small perturbation in the radiation characteristics
of the antenna.

The surface current induced on the patch controls the antenna properties such as
radiation pattern, input impedance, resonant frequency, and bandwidth of the micro-
strip antenna and, therefore, must be determined first. Let J(x',y',z') be the
unknown surface electric current density present on the patch. For a very thin patch
in the plane 2z = 2z°', J has only x-~ and y-directed components. However, for the
general case, it is assumed that J has all three components. The electromagnetic
field due to J can be obtained from

H(x,y,2) = % v x Alx,y,2) (1)
E(X:Y.Z) = = 'j_(g‘{kz ;\(X,Y,Z) + V[V ¢ Z(XIYIZ)]} (2)
k




where the assumed time variation exp(jwt) has been suppressed. The magnetic vector
potential B must satisfy the wave equation

2-1 =1 -
V'a (x,v,z) + k2 A (x,y,2) = -uJ (3)

in the dielectric (region 1) and must satisfy

2

5 ZII(x,y,z) =0 (4)

722l (x,v,2) + k

in free space (region II).
=1/11 , . . . .
If G (x,y,z,x',y',2') is the dyadic Green's function for regions I or II
for a unit impulse current source I(x',y',2z') embedded in the dielectric substrate,
then the solutions of equations (3) and (4) can be written in the form

-I/1

x 1/1

I fond =
(x,v,2,2') = f f J(x',y',2') * G I(x,y,z,x',y',z') dx' dy’ (5)

Patch

With the dyadic Green's function from the appendix substituted into equation (5) and
the order of integration changed, the magnetic vector potential due to the patch

current J(x',y') can be obtained in the form
Al z)——1——f°° IR X ) » T (k ,k_,z) [k x + k y)] & dk (6)
XYy = (21:)2 o e I x5y <’ y,z exply{k x YY x v
where
Jk_,x )= [ [ Jx',y") expl-j(k_x' +k y')] dx' dy' (7)
b X y
Patch

and the components of the dyadic f are defined in the appendix.



The scattered field due to the patch current can be obtained from equation (2)
in the following form:

B (x,,2) =G-1%%‘)k_2 I 17, [e O,k e2) 3k k)
Lo kK ,2) jy(kx,ky)] exp(ik x + Jky) a_ dk (8)
B (x,,2) =-7;i%§i5-ffw [ (e kaki2) 3, 0 k)
+ Ty 0 ek ) jy(kx,ky)] exp(ik x + jky) &k dk (9)
o o
E:z[(x,y,z) - Tj;’—;z- Lo [m{(ki + kj) [f;x(kx,ky,z) + f;y(kx,ky,z):l

oL k ,k ,2z)
XX X

y ; 3 ik x + jk a dk
[kyjy(kx,ky) + kxjx(kx,ky)]} exp (] LK +3 yy) % v

+ ]

Oz
(10)
where
I
of
2 2\ I .y 2 ZX
Cxx(kx,ky,z) = (k - kx>fxx + jkx 5z (11)
I 6f§x
= - f + jk k 12
ny(kx'ky'z) kxky xx T %'y oz (12)
. bf;y
ny(kx,ky,z) = _kxkyfyy + jkxky 5z (13)
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2 2..I .2 zy
(k ,k ,z) = (k° - kK“)f~ + jk° —= 14
ny x""y’ ) ( y) vy © 'y oz 14

The total tangential electric field at the plane 2z = z' consists of the scat-
tered field due to the patch current and the field due to the incident plane wave.
The scattered field due to the patch current is given by equations (8) and (9), and
the electric field at the patch location 2z = 2z' with the patch removed is obtained
by using the laws of reflection and refraction to produce the following:

i 2y sin(kz"') exp(jkod)
EX=E -

(15)

o s s
JE; cos(kd) + j sin(kd)

By setting the total tangential electric field over the patch equal to zero, the
following integral equations are obtained:

i jw © © .
E =—3— [ [ [c &,k ,z') 3 (k_,k)
(2mA2 77 TT® Ty x x"y
+ kX .k ,2') 3 ; :
Lo Bk Jy(kx,ky)] exp(ik x + k y) dk dk_ (16)
i Jjw o .
B =—3— [ [ [t (k_,k ,z') 3 Gk k)
Y (2m%? RS A £ X Xy
+ k ,k ,2z') 3 (k ,k )] exp(ik x + jk_y) dk_ ak (7
oy Fx®y jyxy] PRIEY PEyY x Yy

The integral equations (16) and (17) can be used to determine the patch current
for a microstrip patch of any arbitrary shape. However, when one tries to solve
equations (16) and (17) by the method of moments, it is difficult to arrive at a
proper expansion function for the current distribution on the patch unless the geom-
etry of the patch is an ordered shape such as a rectangle, a circle, or a square. It
may be concluded that the application of equations (16) and (17) may be limited by
complexity of the patch shape.

Radiation Pattern

The patch current obtained after solving equations (16) and (17) can be used to
evaluate the radiation pattern. It is well known that the far field due to a radiat-
ing aperture is directly related to the Fourier transform of the tangential electric
field over the aperture (ref. 9). Hence, the radiation pattern due to a microstrip
patch embedded in a dielectric substrate with one surface grounded can be obtained
from a knowledge of the Fourier transform of the electric field over the interface



between free space and the dielectric region. The transformed electric field in the
plane of z =d can be obtained from equations (8) and (9) as

_ =jwpd . . N
o Oy )y = 5 [cxx(kx.ky) 3 06 rky) + B k) 3, G k)| 08)
k_/k_, =-jwlﬁ k_/k i (k_,k k ,k j k:k- 1
oy Uiy ®)| g = [ny‘ 2y B Ueeky) * C O i) 3y k)] (1)

where e and e are the Fourier transforms of EX and Ey‘ The far field is
then given by (ref. 9)

jk

. o) .

Ee = (ex cos ¢ + ey sin cb) ST exp(—jkor) (20)
ik,

E(p = (ey cos ¢ - e sin ¢) cos 0 -z—n?exp(—jkor) (21)

With the following coordinate transformation

~
1

ko cos ¢ sin O (22a)

k
Yy

ko sin ¢ sin © (22b)

the far-field radiation patterns become

—kow exp(—jkor)
E.(8,0) = [c (6,6) cos ¢ + &_ (8,0) sin ¢:I 5.08,6)
® 2mrk? { xx xy X
+ I:ny(e,tb) cos ¢ + ny(e,d)) sin ¢] jy(e,¢§ (23)
-k w exp(—jkor)
E¢(9,¢) = ° znrkz i cos e{l:cxy(e,q)) cos ¢ - z;xx(e,m sin (ﬂ jx(G,d))
+ [ny(9r¢) cos ¢ - ny(9,¢) sin ¢] jy(9,¢§ (24)



where the quantities Cxx(6,¢), £.,(9,¢), ¢, (0,¢), and Cy (0,9) are evaluated
at z = d. Also, jx(6,¢) and jx¥9,¢) are the Fourier transforms of the patch

current with k, and ky replaceg by equations (22).

After considerable mathematical manipulation, the radiation patterns can be
written in the form

5 - sin(Dk - Zi)
Eg(0.8) = C[3, (8,8 cos ¢ +3,(8,0) sin ¢](c, - sin®e)((Z- - 1) b, - %
N (9,4))— sin D
TE k 2

+ -j(e_ - 1) 8in" 06 sin 2!

DTE(9,¢) Dk r k

B B sin D

1 1] k

X (25)

LDTE(G,cb) [DTM(G.MJ( D, )

E¢(6,¢) = -co[jx(e,¢) sin ¢ - jy(e,¢) cos ¢](er cos 0)

+ . (26)

y (EL._ O Sin(Dk - Zi) NTE(9,¢) sin Dy
D - Zﬁ DTE(9,¢) "

where

_ S 2 R . . J—
NTE(6,¢) = qer sin” 0 cos(Dk Zk) + j cos 6 s:.n(Dk Zk)
D__(6,¢) = Je - sin29 cos D + j cos 6 sin D
TE ' ' T k k
D (0,¢) = ¢ os O cos D, + j \le - in26 sin D
m!{°r®) =€ ¢ xk T\ TS X

o
il

x 4 dé - sin29
1) r

zZ' =k z! Je - sin29
k o r

wik2a\ [exp (- 1)
c = o o o

o 27E k r
r o




Application to Rectangular Patch

Consider a microstrip antenna in the form of a rectangular patch with respective
E- and H-plane dimensions of W, and W as shown in figure 2. The current distri-
bution on the patch must be expanded in zerms of eigenfunctions which satisfy the
proper edge behavior such that the normal component of the patch current density is
zero at the edge and the parallel component approaches infinity at the edge. In the
classic eigenfunction solution of a problem involving edges, these edge conditions
are explicitly used to select the eigenfunctions. However, it may be unnecessary
here to use the exact eigenfunctions. Instead, one may expand the patch current
density in terms of triangular, sinusoidal, or flat pulses to approximate the current
distribution. Therefore, the rectangular patch is divided into rectangular subdo-
mains which allow one to expand the current in terms of overlapping triangular pulses
in the direction of the current and in terms of flat pulses orthogonal to the cur-
rent. Hence,

M N+

I (x,y) = ZZ jmn P_(x) 9 (y) (27a)

m=1 n=1

M+1 N

3, (x,y) =Z Z f’;n o (x) P_(y) (27b)

m=1 n=1

where

P (x) =1+ (x - x )/Mx ((x =-Bx) < x< x )
m m m m

=1 - (x - xm)/Ax (xm < x < (xm + Ax))

I
——

(v <y< (y -a4y))
n n

Qn(y)

g
I

wx/(M + 1)

il

A W /(N + 1)
V4 Y/

10



and jzn and Jmn are the unknown complex x- and y-directed current coefficients
for the m,n subdomain.

With equation (7), the Fourier transforms of the patch current from equa-
tions (27) are

M N#1
,mn
. - E : § : X
Jx(erky) jx Fx,mn(er Y) (28a)
m=1 n=1
M+1 N
,]n
j (k ,k = F k ,k ) 28b
Iy Ky y) jz: jz: Iy Fymn®x¥y (28b)
m=1 n=1

where

Y
J" n
Yn~ m

x +Ax
'ky) Ay j}; m Pm(x) %(y) expl[-] (kxx + kyy)] dx dy

(kx
X,mn X -Ax

. . 2
51n(ky Ay/2) 51n(kx Ax/2)

ky Ay/2 kx Ax/2

Ax Ay

x 5k x - Sk y + k (Ay/2
exp[-j Ko = IRy ¥ Ik (Ay/ )] (29)

F (k_,k )
y,mn X Y

yn+Ay xm
f f gn(x) Pn(y) exp[-j (kxx + k y)] dx dy
yn—Ay xm—Ax Y

. 2r .
s:.n(ky Ay/2) s:n.n(kx Ax/2)

Ax Ay |==
k, by/2 k_ 4x/2

X exp[—gkxxm - Jkyyn + jkx(Ax/Z)] (30)

11



Substituting equations (28) into equations (16) and (17) results in the following
integral equations:

. . M  N+1
1 Jw .mn (o
E = S M ok k2" Foo(k ok )
X (2n)2k2 = et b4 - xx x'y X,mn X Yy
M+1 N
X ex k & + ik v) dk dk + k ,k ,z!
p(3 ik ¥ ML 2D VR DEE b R I S LA
m=1 n=1
X F k ,k j 5 1
y,mn( < Y) exp(kax + Jkyy) dkx dky (31)
M  N+1
i @
E,6 = ZZ fb f_mC (k ok ,2') F_ (k,k)
Y (2n)2k2 m=1 he Xy x'y x,mnx
M+1 N
o0
exp(ik x + k ¥) NI YED DRE A A R SN LS
m=1 n=1
x ik x +
Fy,mn(kx'ky) eXP(J Xx Jkyy) dkx dky (32)

If the method of moments is used with testing functions identical to the expan-
sion functions, equations (31) and (32) can be reduced to algebraic equations. Mul-
tiplying equation (31) by P (x) 0 (y) and integrating with respect to x and ¥y

q

gives

M N#+1 pa M+t N jolef
,mn_mn ;MmN mn
DD IR ULED DD DE N (33)
X, Pq X XX y xy
m=1 n=1 m=1 n=1

Likewise, multiplying equation (32) by Pq(y) Qp(x) and integrating gives

M N+1 pq M+1 N pq
.mn_mn ,mn_mn
E = E E { z + E i 2z (34)
Y.Pq X ¥X Yy YY
m=1 n=1 m=1 n=1

12



where

b4 X +Ax i
By b =fq fp E, P (x) O (y) dx dy (35)
’ -/ x -Ax
Y™ “¥p
v _+Ay X .
E =} ¢ P g' p (y) 0 (x) dx dy (36)
Y.Pq vy Ay Jx -ax ¥ 9 P
q P
g% j W © o
Z0=—3“— 1 [ ¢ & ,k,z)F (k,k)F  (-k ,-k ) dk dk (37)
XX 2 -© "—® XX X Y X,mm X Y X, pq X y X y
(27) k
g% j W L S
2 =—31— " [T ¢ & ,k,z2')F (k ,k)F (-k ,k ) dk d (38)
Xy 22 "=® "—o® ‘yx x ¥y ymn X ¥y X,pd X Y x Y
(27m) k
3% j W © o
Z . I J ] t & .,k,z')F (k ,k ) F (-k ,-k ) d& dk (39)
yx 22 "-® "—» ‘xy x ¥y X,mmn X Yy Y,pd X Y X Yy
(27) k
g% j W © @
z . = —— [ J ¢t &k ,k)F k ,k ) F (-k ,-k ) & & (40)
Yy (27:)2]{2 -® T-® yy X ¥y ’ X Y Y.,pa X ¥y X Yy

By varying p =1, 2, «ee, M and q =1, 2, .4e, N+ 1 in equation (33) and by
varying p =1, 2, see, M+ 1 and q =1, 2, +eo, N in equation (34),

M(N + 1) + (M + 1)N equations with M(N + 1) + (M + 1)N unknowns are obtained.
Hence, equations (33) and (34) can be written in the following matrix form, where the
dimensions of each submatrix are given below the submatrix:

pa X pd -
mn mn ‘MmN
[Px.5d] ¥ ] Nk ] ﬂ
X,pq XX [ _XY _Xd
M(N+1) %1 M(N+1) XM(N+1) : M(N+1) % (M+1)N| |M(N+1) %1
———————— el et I EEE ST (41)
pPq I " pd _
mn ! mn .mn]|
E Z | Z 3
v.pq Bz | B2 | Y |
(M+1)NX1J (M+1)NXM(N+1) | (M+1)NX(M+1)N]| | (M+1)Nx1

13




With the variables changed such that k_=k Bcos a and k_ =k B sin a, the gen-
. . . . X o . Yy o
eralized impedance elements in equation (41) are given by

2

1
Pgq @ /2 Sin('z— k B Ax cos a)
2™ = ¢ J f b(a,B)|— °

—k B Ax cos «
2 o

B=0 “a=0
x [(sr - 52 cosza) §1(B) - j(er - 1)62 cos2a EZ(B)]

x cos[koB(xm - xp) cos a] cos[koB(yn - yq) sin a]B dp da (42)

1

1 1
/2 sin(; k B Ax cos a) sin(—z— k B Ay sin a)
o) o
f b(al B) — 1
—k Ax cos a —k Ay sin «
oa=0 2 o‘3 2 oB Y

Pa ®
mn
zZ =C
Xy J’
B=

x [g, (B +3te_ - 1) g3 ]p% sin a cos a

0

x sin[}coﬁ(xm - xp + _g_x) cos o::l sinl:koB(yn - Yq + Az_y> sin a]B dp da (43)

Ra _pa
2" = P2 (44)
yx Xy
] 2
ra ™ n/2 sin(— k B Ay sin a)
mo_c b(a,B) 2
YY .
—k A
B=0 “a=0 y kP by sin a
2 . 2 . 2 ., 2
X [(sr - B” sin a) E1(B) - J(Er - 1)B" sin"«a 52(8)]
x sin[koB(xm - Xp) cos a] sin[kOB(yn - yq) sin «|f 4B da (45)
where
_ 3120 .

C J_“er (koz )(ko Ax)(ko Ay) (46)

14



koB Ax cos oc) s1n(2 k |3 Ay sin a)

51n
b(a,B) = 1
—-k B Ax cos « E-koB Ay sin «

sin(koz' €. - 82>
z'dsr - Bz

T s - ool P P e - oA
- 48
d - 51n< odJa ) + der cosékod €. = 52>

(47)

£,(p) =

X

2 [ ¥ s
J\le—— 51n(k d\l—?> +e 1 -8 cos< afe_ - 32>

N ( 62) 51n(k z\[—:)
s - 6 Sin<kodJ€r - 62) + Jsr - g2 cos(kodJer—_g—z>

and the integration over the k_,k -plane has been reduced to an integration over one
quadrant by using the even and od% properties of the integrand.

£,(B) =

(49)

The impedance elements are computed by using numerical integration techniques
and properly accounting for the contribution of surface wave poles. The unknown
complex current coefficients jin and j are then determined from equation (41)
by using matrix inversion.

Patch Current Distribution

The patch current distribution can be obtained by solving the matrix equa-
tion (41). The matrix elements are numerically computed by using the Gauss
quadrature numerical integration technique. For accurate computation, the upper
limit on the B integration must be terminated at a sufficiently large value. It
was found numerically that any increase in the upper limit above 600 does not change
the values of the matrix elements appreciably.

Without loss of generality, the left-hand side of equation (41) may be assumed
to be unity. Therefore, the numerical results for patch current distribution given
in this report are normalized to the total incident electric field on the patch, that
is, E; given in equation (15).

15



Although the problem of the rectangular microstrip antenna is formulated cor-
rectly in terms of coupled integral equations, the approximation to the patch current
distribution is introduced when one tries to solve the integral equations by the
method of moments or by Galerkin's method. The numerical solution of equation (41)
is expected to converge when the number of subdomains approaches infinity. In prac-
tice, however, because of computer storage and time limitations, it is desirable to
obtain an answer with as few subdomains as possible. It is, therefore, important to
know the proper number of subdomains to obtain accurate values of the patch current
distribution.

For a 1.0\ square patch (Wx = W_) in free space and illuminated by a plane
wave at normal incidence, the patch current converges to the correct value when
M > 7 and also N ?» 7 (ref. 10). The present problem becomes identical to the one
in reference 10 when 4 =« and €. = 1. It is expected that the patch current
obtained after solving equation (41) for M > 7 and N > 7 will oscillate about the
converged value of the patch current in reference 10 as the substrate thickness 4
is varied. The patch current at the center of the patch obtained after solving equa-
tion (41) for M =N = 7 is plotted in figure 3 as a function of the substrate
thickness for a dielectric constant of unity. As expected, both the real and imagi-
nary parts of the patch current indeed oscillate about the free space value. For
further calculations, the number of subdomains is selected such that M =N = 11,

For further verification of the present method, it is important to check the
results obtained with the present method with earlier known results. The transverse-
electric-strip (TE-strip) problem is a limiting case of the rectangular patch under
the condition WY »> o, The patch current at the center, therefore, must asymptoti-
cally approach the TE-strip current (refs. 11 and 12) as Wy approaches infinity.
Figure 4 shows the results are as expected.

After checking the validity of the present formulation, equation (41) is solved
for a square patch. For xz-polarized plane wave excitation, the magnitude of the
y-directed current is very small compared with the magnitude of the x-directed
current (typically 25 to 30 dB less); therefore, Jy may be neglected. It is
advantageous to study the current distribution on the patch, Jk(x,y), which may
allow one to express the current in terms of more appropriate basis functions. The
current distribution J_(x,y), obtained after solving equation (41), is plotted in
figqure 5 as a function of x at y =W_/2 and as a function of y at x = Wx/2.
It is clear from figure 5 that JX(X:Y) is almost sinusoidal in the direction of the
current and is uniform, except at the edges, along the direction orthogonal to the
current; therefore, it is more appropriate and advantageous to express the patch
current density in the following form:

Jx(x,y) = Jx cos(ﬂx/Wx) (50)

The assumption of uniform distribution in the y direction gives a value of jx
slightly higher than the true value. With the above current distribution, the number
of unknowns to be evaluated is reduced from M(N + 1) + (M + 1})N to 1. The matrix
equation (41) then reduces to

| il

E =2 J (51)
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where

2 2
© /2 51n( k BW sin<9 21 cos(l k BW_cos a)
7 =T 2 B 2 o X
XX 2 1 . 2 2
B=0 Ya=0 E-koBW& sin a . w - (kOBWx cos )
x [te_ - 8% cos®a) £, (B) - il - 1)82 cos’a £,(8)]6 df da (52)

and C, §1(B), and 52(6) are given by equations (46), (48), and (49).

RESULTS
Patch Resonance

It is informative to plot the real and imaginary parts of jx as a function of
the E-plane dimension, as shown in figure 6. The plot has the characteristic reso-
nant behavior of a tuned circuit and can be used to predict the resonant width (i.e.,
the resonant frequency) of a rectanqular microstrip antenna. The resonant frequency
can be defined as the frequency at which the imaginary part of J is zero. With
the above criteria, the resonant frequency of a rectangular patch is determined and
plotted as a function of the H-plane dimension in fiqure 7 along with available theo-
retical and experimental results from reference 4. It should be noted that the theo-
retical prediction of resonant frequency using the cavity model (ref. 4) requires a
semiempirical correction. However, the present method of analysis, without any cor-
rection, predicts the resonant frequency within the tolerance limits of the dielec-
tric constant (sr = 2,62 + 0.02).

Resonant Width

With the resonant criteria defined in the previous section, the resonant width
of a rectangular microstrip patch is computed as a function of dielectric substrate

thickness for the aspect ratios of 0.5, 1.0, and 1.5 and for dielectric con-
stants € of 1.0, 2.5, 6.0, and XO 0. The values are presented in figures 8
to 11. ese calculations show that the resonant width (normalized to the dielectric

wavelength) of a rectangular microstrip patch antenna generally increases with
increases in the dielectric constant of the substrate and decreases with increases in
the substrate thickness.,

The resonant width of a rectanqular patch is also plotted in figure 12 as a
function of the aspect ratio W /Wx. An increase in the aspect ratio causes a
decrease in the resonant width of the patch. Under the limiting case of W A
being large, the resonant width of the rectangular patch will approach asymptotically
the resonant width of the TE-strip (ref. 12).

It is informative to plot the resonant width of the rectangular patch for a
thick dielectric substrate, as shown in figure 13. These calculations show the reso-
nant width decreases approximately linearly with increases in substrate thickness
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for 4 < O.OGXE. For 4 > 0.06%8, the curve is no longer linear and scaling can no
longer be used to estimate the resonant frequency of a microstrip antenna.

In some applications it is desirable to cover the microstrip patch with a
dielectric coating to protect the antenna from environmental conditions. The reso-
nant width of a rectangular microstrip patch for various dielectric coating thick-
nesses is computed and is presented in figure 14. These calculations indicate that
the resonant width decreases with an increase in the thickness of the coating.

Bandwidth

The bandwidth of microstrip antennas may be defined as the band of frequencies
over which the input voltage standing-wave ratio (VSWR) in the feed line is less than
a specified value {(usually 2 or 3). Since the input impedance of a microstrip
antenna is proportional to the patch current, the input impedance variation with
frequency will be the same as that of the patch current. Hence, the input reflection
coefficient variation with frequency can be calculated from a knowledge of the patch
current density. Under the assumption of a unit voltage source and a perfect imped-
ance match at resonance, the reflection coefficient T can be calculated from

Je = 4
. T 224 (53)
Ix jx,r
where j is the amplitude of the patch current density at resonance. The magni-

tude of the input reflection coefficient thus calculated is shown in figqure 15 as a
function of the patch size for a square patch. For the input VSWR in the feed line
to be less than 3, the percent bandwidth may be obtained by

100 A(W_/A) 4

(54)
(wx/kE )o

Percent bandwidth =

where A(wx/)»e)3 and (Wx/)\e)o are defined in figure 15. The percent bandwidth for
a VSWR less than 2 can be determined in a like manner. The percent bandwidth thus
calculated is compared with measured data in figure 16 for probe~-fed square patches.,
The apparent increase in the measured percent bandwidth may be due to feed-connection
insertion loss and copper loss in the experimental models. The calculated percent
bandwidths for rectangular patches are presented in fiqures 17 to 22 for aspect
ratios W /wx of 0.5, 1.0, and 1.5 and dielectric constants € of 1.0, 2.5, and
6.0. These calculations show an increase in bandwidth with increases in dielectric
substrate thickness, which is consistent with previous measured results (ref. 13).

The percent bandwidth of a square microstrip patch with a thicker dielectric
substrate is presented in figure 23. This calculation indicates that a bandwidth up
to 20 percent may be possible by constructing the antenna on a thick dielectric.

Figure 24 shows the effect of a dielectric coating on the percent bandwidth of a
square patch. The calculations show no appreciable change in percent bandwidth when
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the cover thickness is less than 0.04\N . However, for thicker dielectric coatings
(greater than 0.04%8), there is an increase in the bandwidth of about 1 percent.

Radiation Pattern

With the x-directed current distribution given in equation (51), the radiation
patterns of a rectangular microstrip antenna are computed from equations (25)
and (26)., The results are presented in figures 25 and 26 along with experimental
data (ref. 4). There is a close agreement between the calculated and measured
radiation patterns.

CONCLUSION

The dyadic Green's function for a current source located in a dielectric with
one surface grounded has been derived. The dyadic Green's function was used to
arrive at a set of coupled electric-field integral equations for a microstrip patch
of arbitrary shape. BAs an example of the applicability to microstrip antennas, the
integral equations were solved for a rectangular patch using Galerkin's method. It
is shown that the patch current can be used to accurately predict the resonant fre-
quency, the bandwidth, and the radiation patterns of microstrip antennas. Data for a
range of design parameters are presented for the rectangular microstrip antenna.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 25, 1984
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APPENDIX

DERIVATION OF DYADIC GREEN'S FUNCTION

The expression in equation (5) must satisfy the wave equations (3) and (4);
therefore,

V2§I(x,y,z,X',y'.Z') + k2 EI(x,y,z,X',y',Z') = -uI 8(x-x") 8(y-y') 8(z-z") (a1)

2 EI

o) I(XIYIZIX'IY'IZ') =0 (A2)

V2§II (x,y,2,x',y"',2'") +k

It is clear from equations (A1) and (A2) that the Green's function is the electric
vector potential due to a unit impulse current located at the point (x',y',z').

It is advantageous and less tedious to obtain the solution of equations (A1)
and (A2) in the spectral domain. Therefore, taking the bidimensional Fourier
transform of both sides of equations (A1) and (A2) and using Sommerfeld's radiation

condition (ref. 14) yields

2=T
g (erkylzrx' Y, 2')

I\2 =I
+ (k ) g (kx,ky,z,X',y',Z')

bzz
— T ot - [ '
= -uI 8(z-2') exp| I x' + Koy )] (a3)
2=T1I
g " {k_,k_,z,x',y',2") _
X Yy + (kII)Z §II(k k ,z,x',y',2') =0 (24)
622 Xy

where

=I/II1 fad © =T/TI :
g / (kx,ky,z,x',y',z') = f_m f_w G / (x,y,z,x',y",2") exp[-j(kxx + kyy)] dx dy

(a5)
I 2 2 2 2 2 2
ko = \Ikot—:r - (kx + ky) (koer > (kx + ky)) (n6a)
2 2 2 2 2 2
= =5 J(kx + ky) - ke, (koer < (kX + ky)) (A6b)
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11 2 2 . .2 2 2 .2
k dko - (% + ky) (ko > (k + ky))

. 2 2 2 2 2 2
302 4 k2) - %7 (2 < (62 + x2))

With a shortened notation EI/II, ;I/II

FL/11 _ gi/IIx + §;/IIY + §g/IIZ

where

-T/II I/110 + _I/II. I/I1]
S/ - T T o

~1/I1 _ _I/1I2 + _1/I1) , .I/II.
Iy Ixy *  Gyy Y ¥ Iy E

g;Z/II = gié I+ ggé Iy + ggéIIz

=I/I1
=

The scalar components of satisfy the following wave equations:

21
0°g
5 ()7 g, = o sy expl e+ xy)]
21
0°g
2 I .
azgy + (k1) 9yy = " Blz-2') exp[-j (k_x' + kyY')]
21
o'g
I\2 I .
az;z + (k ) géz = - 6(z-z') exP[_J(kXx' * kYy')]

(kx,ky,z,x',y',z') may be expressed as

(a7a)

(A7b)

(n8)

(A9)

(A10)

(A11)

(a12)

(A13)

(A14)
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Other components satisfy the following equations for regions I and II:

2.1

O s kM)t =0 (a15)
2

oz

2,11

0°f + (kII)Z fII =0 (a16)
622

where £l denotes the right-hand scalar components of equations (29) to (A11)
(excluding Ix vy’ and gIz for region I, and £IT denotes the right-hand
scalar components o¥ equations (A9) to (A11) for region II.

The solution of equation (A12) has two parts, complementary and particular. The
complementary solution can be written in the form

I + . I - i I
= C - + C
I xc x exp(-jk~z) e exp(ik~z) (a17)
where C; and C_ are unknown constants. For the particular solution, the

Fourier transform of both sides of equation (A12) is taken with respect to 2z and
yields

I u exp[~j(k x' + kyy + k z' )]

' ' ' =
gxxp(kx'ky’kz'x Y ,2') k2 ( 1)2 (a18)
z

Taking the inverse transform with respect to 2z yields

. bexp[-ik x' +k S )] exp[Jk (z - 2 )]
gxxp(kx,ky,z,x',y',z') = - dkz (a19)

2n (kI)2

The integrand in equation (A19) has poles at k, = tkI; therefore, equation (A19) can
be evaluated through contour integration in the complex domain. Hence,

I __]p' — ] ) I - [}
Texp : exp| 3k x' + kyy )] exp[ -k |(z - 2*)]|] (A20)
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The complete solution of equation (A12) can be obtained from equations (A17)
and (A20) as

I + LI - oL
e = Cxx exp(-jk z) + Cxx,exp(Jk z)

- i—:l—exp[-j (R x' +k y")] exp[ kY| (z - z")]|] (a21)

Likewise, the solutions of equations (A13), (A14), (A15), and (A16) are obtained in
the following forms:

I + I - I
= C exp(-jk™z) + C exp(jk z)
9oy yy ¥P(-3 ) vy p(3
-8 exp[(k_x' + k. y')] exp|-ikI|(z - z")]] (a22)
I b 4 yy
2k
I + L - O
9,, = sz exp(-jkz) + sz exp(jk z)
j . i L
- ;iL-exp[—j(k x' +k y")] exp[-3k"|(z - 2z")]|] (A23)
I b 4 yy
2k
fI = C+ exp(-jkIz) +C exp(jkIz) (a24)
£ - p* exp(-3xTIz) (A25)

where €' and €~ are the coefficients of gI excluding those given in equa-
tions (A21) to (A23), and D* are the coefficients of g I.

The unknown coefficienth}?quuations (A21) to (A25) are evaluated by applying
the boundary conditions on g « These boundary conditions are obtained by equat-
ing to zero the tangential electric field at the plane z = 0 and enforcing the

continuity of tangential electric and magnetic fields at the plane z = d. The
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Fourier transforms of the electromagnetic fields in regions I and II may be obtained
through the following relations:

HI/II(k kK ,z,x',y',2') = -1—(l_< X EI/II) (a26)
Xy [
éI/II(k lk ,Z,X',Y';Z') = - _J"(i') .I.( X K X =I/II) (A27)
X'y k2
where
-— -~ . A . ~ a
K = x(jky) + y(jky) + z(a) (A28)

Subjecting the field obtained from equations (A26) and (A27) to the boundary condi-
tions gives, for zero tangential electric field at 2z = O,

g =g =g =g =g =g =0 (A29)

I I I
agzx _ agzy 3 bgzz .
9z  dz  dz (a30)

Continuity of the tangential magnetic field at z =4 yields

% e
dz oz (a31)
IT
dg dg
Xy _ Xy
dz = dz (a32)
ool odl
N (233)
I I1
dg 0g
yx _ p S
9z =~ 0z (A34)
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Continuity of the tangential electric field at

II
XX

IT
Xy

IT
XZ

II
yx

IT
YY

z =d yields

(A35)

(a36)

(A37)

(A38)

(A39)

(A40)

(A41)

(242)

(a4 3)

(r44)

(A45)

(746)

(a47)

25



APPENDIX

I _ gII (A48)

3 II agI
I I _ zy _ _z¥
kx(er 1)gxy + ky(er ”gyy = j (Er Y 52 (a49)
gII agI
I I ZX ZX
ky(er - 1)gyx M kx(E:r - 1)gxx = I\& Bz oz (a50)
IT I
og 0g
I I . Z2 ZZ
ky(Er - 1)gyz + kx(Er - 1)gxz = J(%r Bz —%Er> (a51)
Subjecting equations (A21) to (A25) to the conditions given b}_{ equations (A29)
to (A51) and solving the set of simultaneous equations for and C~ results in
I _ I - . '
I = fxx exp[ 3 (kxx + kyy )] (A5 2)
I I
= f e =j(k x' + k y') AS3
gYY vy XP[ I % Yy ] ( )
I _ I = ' '
9,, = ., exp| Jk x' + Xy ) ] (a54)
r _ I s ' '
gzx = fzxkx exp[ )] (kxx + kyy )] (A55)
gt = ff x exp[~jx.x' +k y')] (A56)
zy zy'y X Yy
where, for (z - 2') < 0O,
eI - el = vz k! cos x'(a -z') + j_k]3I sin k_I(d_ -2z') sin(kIz) (A57)
S 44 kT cos(kd) + 5k T sin(k1d) x1lz
I
I . kcosk(d—z)+3k r51nk(d-z)
fzz = = J—IE T - - [cos(k z)] (A58)
k k € cos(k d) + Jk 51n(k 4d)
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or, for (z -z') > O,

R :
fix - fI = —pz sin k éz -2')
. 2 k! cos kT(@ - z') + kT sin x¥(@ - z') || sin(xTz) (259)
kT cosxta) + 5xTT sin(xla) x 1z
. I
fI _ sin k" (z - z')
-4°4 kIZ
I I II
k" cosk (d - 2') + ik €. sin kI(d - z';] T
I I 5 SR S I I [COS(k Z)] (r60)
k k € cos(k d) + jk~ sin(k™d) J
Also,
. I I
T T u(er - 1) sin(k™2') cos(k z)
£ = £ (n61)
Zx zy

k! costx®a) + k™t sink'a) ][x"Te_ cos(x’a) + 5x* sintxa)]

The other components of EI are zero. Likewise, the components of ;II are given
by
oy = fon e[ x4+ kv ] em[K" G - @] (362)
g;; = f}I’; exp[-5 (kx' +k y')] exp[-ix Tz - a)] (263)
g;:; = f;; exp[3 k x' +k y')] exp[ -k Tz - a)] (r64)
gii = fiikx exp[ - (_x' + kyy')] exp[ -k Tz - a)] (265)
g:; = fzky exp[-3 (k x' + Xk y")] exp[ -k T (z - a)] (266)
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where

oI,
fIT _ 1T _ p sin(k™z") (267)

xx Y kI cos(kId) + jkII sin(kId)

sin kI(d -z2')
kI(d -z')

II
zZ

th
I

-ud - z')

kT cos kT(d - z') + jkIIsr sin k1(d - z') L
1o <-—w—~~l}os(k dﬂ (268)
k € cos(k~d) + jk™ sin(k 4)

.

u

o
L}

iT 1T p(sr - 1) sin(kIz') cos(kId)
fox = T2y = T 1 I IT . I Il I . T I (269)
¥ [k cos(k d) + 3k sin(k a)][k e, cos(k'd) + jk sin(k d)]

=II
The other components of g are zero.

With the inverse Pourier transform, the dyadic Green's function for regions I
and II is obtained from

2
=T 1 -] =T N
G (XIYIZIX'IY'IZ') = (ﬁ) f_m f‘joa g (erky'Z,X',y',Z') exp[J(kxx + kyy)] dkx dky

(A70)

2
=TI 1 o =TT _
G (X, y,z,x",y",2") = (5%) I - Gy ok r2ix' v s20) expljlh x + k,v) ] ak dky

(A71)
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Figure 1.- Geometry of microstrip antenna.
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Figure 7.- Resonant frequency of rectangular patch versus H-plane dimension.
Wx =5.95cm; d = 2z2' = 0.159 cm; €, = 2.62 + 0.02 ,
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Figure 8.~ Resonant width of rectangular patch versus substrate thickness for
Z' = d and €r = 1.0.
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Figure 9.- Resonant width of rectangular patch versus substrate thickness for
z' =4 and Er = 2.5,
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Figure 10.- Resonant width of rectangular patch versus substrate thickness for
z' = d and er = 6.0,
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Figure 11.,- Resonant width of rectangular patch versus substrate thickness for
z' =d and sr = 10,0,
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Figure 12.- Resonant width of rectangular patch versus aspect ratio compared
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Figure 13.- Resonant width of square patch for thick substrates.
z' = 4; Sr = 2.5.
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Figure 14.- Resonant width of dielectric-coated square patch versus coating
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Figure 15.- Input reflection coefficient versus patch size for square patch.
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Figure 18.- Calculated percent bandwidth for rectangular patch for & = 2.5.
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Figure 19.- Calculated percent bandwidth for rectangular patch for & = 6.0.
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Figure 21.,- Calculated percent bandwidth for rectangular patch for & = 6.0.
VSWR < 2; z' = d. r
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Figure 22.~- Calculated percent bandwidth for square patch for VSWR < 2,
z!' = d.
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Figure 23.- Calculated percent bandwidth for square patch with thick dielectric
substrate for VSWR < 3. z' =d4; € = 2.5.
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Figure 24.- Calculated percent bandwidth for dielectric-coated square patch for

VSWR < 3., z' = 0.01757\8;

€
r

= 2.50
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(a) H-plane pattern. ¢ = T/2.

Figure 25.- Radiation pattern for 1187-MHz rectangular-patch antenna.

W = 7.6cm; W, = 11.43 cm; 2' =d = 0.158 cm; € = 2.62,.
X Y r
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Figure 25.- Concluded.
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(a) H-plane pattern. ¢ = m/2.

Figure 26.- Radiation pattern for 804-MHz rectangular-patch antenna.

W = 11,43 cm; W, = 7.6 cm; =z' =4 = 0,158 cm; €_ = 2.62.
X Y r

56



90°

(b) E-plane pattern. ¢ =
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